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LECTURE: THE GREEDY METHOD 
– PART II

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms                                                                                    The Greedy method

1



OBJECTIVES OF THIS LECTURE (PART A)

By the end of  Part A of this lecture, you will be able to:

• Prove the optimality of the greedy solution of the Minimum 
Spanning Tree (MST) problem

• Prove the optimality of the greedy solution of the Single-
Source Shortest Paths (SSSP) problem
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OUTLINE (OF PART A)

• Review of the MST greedy algorithm

• Proof of optimality of the greedy solution of the MST problem

• Review of the SSSP greedy algorithm

• Proof of optimality of the greedy solution of the SSSP problem
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KRUSKAL’S GREEDY MST ALGORITHM
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• Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T)    // non-edges  𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 =
∞

• begin
• Put in T all the n nodes and no edges;
• while T has less than n-1 edges do

• Select a min-weight edge e out of the remaining  edges e; 
• Delete e from the graph; 
• if (e does not create a cycle in T) then 

• Add e to T; 
• endif

• endwhile
• end ComputeMST



ILLUSTRATION OF THE GREEDY MST 
ALGORITHM
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (7,8). No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (8,9), (2,5). Pick (8,9). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms                                                                                    The Greedy method

7

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5



ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (2,5). No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (1,4), (2,5), (5,8). Pick (1,4): No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (2,5), (5,8). Pick (2,5). No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (5,8). Creates cycle
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (5,8). Creates cycle => throw it
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (2,3) and (5,7). Pick (2,3):  No cycle => OK to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (5,7). Creates cycle
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (5,7). Creates cycle => throw it
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (1,2), (3,10), (4,7), 6,9). Pick (1,2):  No cycle => OK 
to add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Min edge: (3,10), (4,7), (6,9). Pick (3,10):  No cycle => OK to 
add
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• Tree completed (got 8 edges)
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ILLUSTRATION OF THE GREEDY MST 
ALGORITHM

• This is the spanning tree produced by the greedy algorithm
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PROOF OF OPTIMALITY (1/6)
Theorem: The greedy ComputeMST algorithm computes a mininum spanning tree.

Proof:
• Let 𝑇𝑇 be the tree generated by the algorithm
• Let 𝑇𝑇′ be a minimum spanning tree
• We need to prove that 𝑇𝑇 is a minimum spanning tree, i.e., 𝑊𝑊 𝑇𝑇 = 𝑊𝑊(𝑇𝑇′)
• If 𝑇𝑇 = 𝑇𝑇′, done. So assume that 𝑇𝑇 ≠ 𝑇𝑇′.
• Strategy: 𝑇𝑇′ will be transformed to 𝑇𝑇 without weight change:

• Substitute a carefully selected edge 𝑒𝑒 ∈ 𝑇𝑇− 𝑇𝑇′ (i.e., in 𝑇𝑇 but not in 𝑇𝑇′) for an edge 𝑒𝑒′ ∈ 𝑇𝑇′ − 𝑇𝑇, 
without changing the weight of 𝑇𝑇′.

• This makes 𝑇𝑇′ resemble 𝑇𝑇 more
• This transform is repeated several times until 𝑇𝑇′ becomes identical to 𝑇𝑇 without weight change. 
• This will show that 𝑊𝑊 initial 𝑇𝑇′ = 𝑊𝑊 final transformed 𝑇𝑇′ = 𝑊𝑊(𝑇𝑇), i.e. 𝑊𝑊 initial 𝑇𝑇′ = 𝑊𝑊(𝑇𝑇)
• Which implies that 𝑇𝑇 is a minimum spanning tree
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PROOF OF OPTIMALITY (2/6)

Proof (Continued): 
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Example (just to illustrate the steps of the 
proof for understandability): 
• 𝑇𝑇 − 𝑇𝑇′ = { 3,6 , (2,9)}
• 𝑇𝑇′ − 𝑇𝑇 = { 6,9 , 5,8 }
• 𝑇𝑇 ∩ 𝑇𝑇′ = { 1,4 , 1,2 , 2,3 , 2,5 , 7,8 , (8,9)}



PROOF OF OPTIMALITY (3/6)
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• 𝑒𝑒 = min_weigh_edge_of(𝑇𝑇 − 𝑇𝑇′) = min({ 3,6 , (2,9)}) =(2,9) 
• Add 𝑒𝑒 to 𝑇𝑇𝑇 temporarily. This creates a cycle: 

(2,9) (9,8) (8,5) (5,2)
• Edge (8,5) in that cycle is in 𝑇𝑇𝑇 but not in 𝑇𝑇
• So, we can take 𝑒𝑒′ = (8,5)
• Note:  W(𝑒𝑒)=W(𝑒𝑒𝑇) Coincidence?

• 𝑇𝑇 − 𝑇𝑇′ = { 3,6 , (2,9)}
• 𝑇𝑇′ − 𝑇𝑇 = { 6,9 , 5,8 }
• 𝑇𝑇 ∩ 𝑇𝑇′ = { 1,4 , 1,2 , 2,3 , 2,5 , 7,8 ,(8,9)}
• 𝑇𝑇 ∩ 𝑇𝑇′′ = { 1,4 , 1,2 , 2,3 , 2,5 , 7,8 , 8,9 ,(8,5)}

1. Let 𝑒𝑒 = min_weight_edge_of(𝑇𝑇 − 𝑇𝑇′)
2. Add 𝑒𝑒 to 𝑇𝑇′ (temporarily). 
3. This creates a cycle 𝑒𝑒1 = 𝑒𝑒 , 𝑒𝑒2 , … , 𝑒𝑒𝑘𝑘 ; 𝒆𝒆𝟐𝟐, … , 𝒆𝒆𝒌𝒌 are in 𝑻𝑻′
4. This cycle must have an edge 𝑒𝑒𝑗𝑗 ∉ 𝑇𝑇 b/c 𝑇𝑇 has no cycles
5. 𝑒𝑒𝑗𝑗 can’t be 𝑒𝑒1 because 𝑒𝑒1 = 𝑒𝑒, which is in 𝑇𝑇
6. Thus, 𝑒𝑒𝑗𝑗 must be one of 𝑒𝑒2 , … , 𝑒𝑒𝑘𝑘, and so is in 𝑇𝑇′
7. Take 𝑒𝑒′ = 𝑒𝑒𝑗𝑗∈ 𝑇𝑇′ − 𝑇𝑇
8. Transform 𝑇𝑇′: 𝑇𝑇′′ = 𝑇𝑇′ ∪ 𝑒𝑒 − {𝑒𝑒′}

All edges in 𝑇𝑇 that are < W(𝒆𝒆) are also in 𝑇𝑇′

Ex: 𝑒𝑒 = (2,9). edges in 𝑇𝑇 that are < W(𝒆𝒆) are  
{(7,8), (8,9), (2,5)}, which are also in 𝑇𝑇′

Blue inserts are 
for the example



PROOF OF OPTIMALITY (4/6)

Proof (Continued)
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Notice how 𝑇𝑇′′ resembles 𝑇𝑇
more than 𝑇𝑇′ resembles 𝑇𝑇

Example: 
• 𝑒𝑒 = 2,9 , 𝑒𝑒′ = (8,5)
• 𝑇𝑇′′ = 𝑇𝑇′ ∪ 𝑒𝑒 − {𝑒𝑒′}



PROOF OF OPTIMALITY (5/6)
Proof (Continued):

9. Claim: 𝑊𝑊 𝑒𝑒′ ≥ 𝑊𝑊(𝑒𝑒)
• We prove the claim by contradiction. Assume 𝑊𝑊 𝑒𝑒′ < 𝑊𝑊(𝑒𝑒)

• 𝑊𝑊 𝑒𝑒′ < 𝑊𝑊 𝑒𝑒 ⇒ the greedy algorithm would process 𝑒𝑒′ before 𝑒𝑒

• All the edges that are processed before 𝑒𝑒𝑇 (and so of weight < 𝑊𝑊(𝑒𝑒)), and which were entered 
into 𝑇𝑇, are also 𝑇𝑇𝑇

• Thus, 𝑒𝑒′ would have to be added by the algorithm to 𝑇𝑇, contradicting the fact that 𝑒𝑒′ is not in 𝑇𝑇. 

• Therefore, the claim 𝑊𝑊 𝑒𝑒′ ≥ 𝑊𝑊 𝑒𝑒 must be true
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All edges in 𝑇𝑇 that are < W(𝒆𝒆) are also in 𝑇𝑇′Remember that

time

𝑇𝑇𝑇

𝑇𝑇 Edges in 𝑇𝑇 before 𝑒𝑒𝑇
𝑒𝑒

Time when 𝑒𝑒 is 
checked by algorithm

𝑒𝑒𝑇

Time when 𝑒𝑒𝑇 is 
checked by algorithm

All those edges are in 𝑇𝑇𝑇
When algorithm checks 𝑒𝑒′, 
it finds that adding 𝑒𝑒′ to 𝑇𝑇
would not create a cycle 
b/c at that time, 𝑒𝑒′and all 
prior edges in 𝑇𝑇 are also in 
𝑇𝑇𝑇, and 𝑇𝑇𝑇 has no cycles



PROOF OF OPTIMALITY (6/6)

Proof (Continued):

10. Since 𝑇𝑇′′ = 𝑇𝑇′ ∪ 𝑒𝑒 − {𝑒𝑒′}, 
we have 𝑊𝑊(𝑇𝑇′′) = 𝑊𝑊(𝑇𝑇′) + 𝑊𝑊 𝑒𝑒 −𝑊𝑊 𝑒𝑒′ ≤ 𝑊𝑊(𝑇𝑇′)

11. 𝑊𝑊(𝑇𝑇′′) ≤ 𝑊𝑊(𝑇𝑇𝑇) and 𝑇𝑇′ is minimum ⇒ 𝑇𝑇′′ is minimum and 𝑊𝑊(𝑇𝑇′′) =
𝑊𝑊(𝑇𝑇𝑇)

12. This shows that the transform (from 𝑇𝑇′ to 𝑇𝑇′′) does not change the 
weight.

13. By our strategy laid out earlier, this transform can be repeated, 
yielding in the end a tree identical to 𝑇𝑇, and implying that 𝑇𝑇 has the 
same weight as initial 𝑇𝑇′, which is minimum

14. Therefore, T is a minimum spanning tree.                        Q.E.D.
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GREEDY SINGLE-SOURCE SHORTEST PATHS
-- DISTANCE APPROXIMATIONS: SPECIAL PATHS --

• Let 𝒀𝒀 be a set := {s} initially

• Definition: A path from s to a node x outside 
𝑌𝑌 is called special path if each intermediary 
node on the path belongs to 𝑌𝑌.

• Let DIST[1:n] be:
• DIST[i] = the length of the shortest 

special path from s to i

• Greedy selection policy: choose from 
outside 𝑌𝑌 the node of minimum DIST value, 
and add it to 𝑌𝑌

• Claim (proved later) :  
∀𝑖𝑖 ∈ 𝑌𝑌,𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒[𝑖𝑖],  that is, when 
a node 𝑖𝑖 joins 𝑌𝑌, its DIST is equal to its 
distance from s. 

• Special paths: 
• 1, 2, 3  because 1 is source, and 1 and 2 are inside Y

• 1, 2, 7, 5  b/c 1 is source and 1, 2, and 7 are inside Y

• 1,5  (missing edge is an edge of weight ∞)

• Not Special paths: 1, 2, 3, 4  (b/c 3 is not in Y);    1, 7, 5, 8  
(Why?)
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GREEDY SINGLE-SOURCE SHORTEST PATHS 
ALGORITHM
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Procedure SSSP( in: W[1:n,1:n], s; out: DIST[1:n]);
begin

for i =1 to n do:  DIST[i] := W[s,i]; endfor
// implement Y as Boolean array Y[1:n] : Y[i]= 1 if i ∈Y, 0 otherwise 
Boolean Y[1:n]; // initialized to 0
Y[s] := 1; // add s to set Y 
for num =2 to n do

Select a node u from out of Y (i.e., Y[u]==0) such that
DIST[u] = min {DIST[i] | Y[i] = 0};

Y[u] := 1; // Add u to Y
// update the DIST values of the other nodes
for all node v  where Y[v] = 0 do

DIST[v]= min (DIST[v], DIST[u]+W[u,v]);
endfor

endfor
End SSSP



SPECIAL PATHS AND DIST
-- UPDATES EXAMPLE --

• 𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝑣𝑣 = min(𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝑣𝑣 , 𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝑢𝑢 + 𝑊𝑊[𝑢𝑢,𝑣𝑣])

• Before update: DIST[7]=10

• After update: DIST[7]=

min(10, DIST[2]+W[2,7])=

min(10, 5+3)=8.

• DIST[3]=min(∞, DIST[2]+W[2,3])=15
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i: 1 2 3 4 5 6 7 8 9

DIST[i] 0 5 ∞ ∞ ∞ ∞ 10 ∞ ∞

i: 1 2 3 4 5 6 7 8 9

DIST[i] 0 5 15 ∞ ∞ ∞ 8 ∞ ∞



OPTIMALITY OF THE GREEDY SSSP (1/3) 

Theorem: When a node u enters Y, we have  DIST[u] = distance(s,u).

Proof: 

• The proof is by induction on the number k of elements in Y.

• Basis: k=1. That is, Y has only node s. Well, DIST[s]=W[s,s]=0; also, 
distance(s,s)=0. Thus, DIST[s]=distance(s,s).

• Induction step: 
• Assume the theorem holds for every node v that had entered Y before u. 

That is, assume that for every node v that entered into Y before u, v satisfies 
DIST[v] = distance(s,v). 

• Prove that the theorem holds for u (which is selected by the algorithm to be 
the next node to enter Y).  That is, prove that DIST[u] = distance(s,u). We do 
so by contradiction.
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OPTIMALITY OF THE GREEDY SSSP (2/3)
Proof (continued): DIST[u] = distance(s,u) ??
• Assume DIST[u] ≠ distance(s,u). That is,  

distance(s,u) < DIST[u] 
• This means the shortest path from s to u (call 

that path P) is not a special path.
• This implies that at some point, 𝑃𝑃 exits Y going 

through some node/nodes before reaching u. 
• Let z be 1st such node, 𝑄𝑄 the portion of 𝑃𝑃 from 

s to z.
• 𝑄𝑄 is a special path to z => DIST 𝑧𝑧 ≤ length 𝑄𝑄
• DIST 𝑧𝑧 ≤ lengtℎ 𝑄𝑄 ≤ lengtℎ 𝑃𝑃 =

distance 𝑑𝑑,𝑢𝑢 < DIST[𝑢𝑢]

• ∴ DIST 𝑧𝑧 < DIST[𝑢𝑢]
• contradicting the choice of u as having the 

smallest DIST outside Y.
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Y

s

u

Shortest special path from 
s to u, of length DIST[u]

z

Shortest path P from s to 
u, of length distance(s,u)

Q is the portion 
of P from s to z. 

G

The node u has the 
smallest DIST outsideY

Q is a special 
path to z



OPTIMALITY OF THE GREEDY SSSP (3/3)

Proof (continued):

• The contradiction means that the assumption that 

DIST[u] ≠ distance(s,u) 

must be false

• Hence, DIST[u] = distance(s,u).                                Q.E.D.
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LESSONS LEARNED SO FAR
• The same greedy policy on the same problem can be implemented in different ways

• Some implementations can be much faster (e.g., min-heap for greedy sorting)

• Pre-processing the input can be very helpful (e.g., sorting P/W) 

• The greedy method does not always guarantee optimality

• To prove non-optimality, use counter-examples

• For the same problem, one can formulate different greedy policies, some non-optimal 
and some optimal

• Greedy selections may have to be discarded sometimes (like in MST)

• Sometime problems may have to be reformulated to make the greedy formulatable (as 
in SSSP)

• Proving optimality of greedy solutions can be quite involved, but not too hard
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OTHER WELL-KNOWN GREEDY ALGORITHMS

• The Huffman Coding (for lossless compression): Optimal

• Activity selection problem: Optimal

• Many other scheduling problems, graph problems, etc., 
where the greedy solution may not be optimal but is often 
sub-optimal (i.e., better than random solution but is not 
necessarily optimal)

• In fact, when algorithms for finding an optimal solution are too 
slow, designers resort to (fast) greedy algorithms and are 
contented with the sub-optimal greedy solutions
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https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Activity_selection_problem
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