
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: THE GREEDY METHOD
– PART II

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms The Greedy method

1

OBJECTIVES OF THIS LECTURE (PART A)

By the end of Part A of this lecture, you will be able to:

• Prove the optimality of the greedy solution of the Minimum
Spanning Tree (MST) problem

• Prove the optimality of the greedy solution of the Single-
Source Shortest Paths (SSSP) problem

CS 6212 Design and Analysis of Algorithms The Greedy method

2

OUTLINE (OF PART A)

• Review of the MST greedy algorithm

• Proof of optimality of the greedy solution of the MST problem

• Review of the SSSP greedy algorithm

• Proof of optimality of the greedy solution of the SSSP problem

CS 6212 Design and Analysis of Algorithms The Greedy method

3

KRUSKAL’S GREEDY MST ALGORITHM

CS 6212 Design and Analysis of Algorithms The Greedy method

4

• Procedure ComputeMST(in: 𝑊𝑊[1:n,1:n]; out: T) // non-edges 𝑖𝑖, 𝑗𝑗 : 𝑊𝑊 𝑖𝑖, 𝑗𝑗 =
∞

• begin
• Put in T all the n nodes and no edges;
• while T has less than n-1 edges do

• Select a min-weight edge e out of the remaining edges e;
• Delete e from the graph;
• if (e does not create a cycle in T) then

• Add e to T;
• endif

• endwhile
• end ComputeMST

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

CS 6212 Design and Analysis of Algorithms The Greedy method

5

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (7,8). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

6

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (8,9), (2,5). Pick (8,9). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

7

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (2,5). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

8

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (1,4), (2,5), (5,8). Pick (1,4): No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

9

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (2,5), (5,8). Pick (2,5). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

10

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (5,8). Creates cycle

CS 6212 Design and Analysis of Algorithms The Greedy method

11

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (5,8). Creates cycle => throw it

CS 6212 Design and Analysis of Algorithms The Greedy method

12

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (2,3) and (5,7). Pick (2,3): No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

13

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (5,7). Creates cycle

CS 6212 Design and Analysis of Algorithms The Greedy method

14

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (5,7). Creates cycle => throw it

CS 6212 Design and Analysis of Algorithms The Greedy method

15

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (1,2), (3,10), (4,7), 6,9). Pick (1,2): No cycle => OK
to add

CS 6212 Design and Analysis of Algorithms The Greedy method

16

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Min edge: (3,10), (4,7), (6,9). Pick (3,10): No cycle => OK to
add

CS 6212 Design and Analysis of Algorithms The Greedy method

17

1

5 6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• Tree completed (got 8 edges)

CS 6212 Design and Analysis of Algorithms The Greedy method

18

5

1

6

32

7

4

98

12

8

10

15

10 10

8

1

3
5

3

5

10

5

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

• This is the spanning tree produced by the greedy algorithm

CS 6212 Design and Analysis of Algorithms The Greedy method

19

1

5 6

32

7

4

98

10

8

1

3
5

3

5

10

PROOF OF OPTIMALITY (1/6)
Theorem: The greedy ComputeMST algorithm computes a mininum spanning tree.

Proof:
• Let 𝑇𝑇 be the tree generated by the algorithm
• Let 𝑇𝑇′ be a minimum spanning tree
• We need to prove that 𝑇𝑇 is a minimum spanning tree, i.e., 𝑊𝑊 𝑇𝑇 = 𝑊𝑊(𝑇𝑇′)
• If 𝑇𝑇 = 𝑇𝑇′, done. So assume that 𝑇𝑇 ≠ 𝑇𝑇′.
• Strategy: 𝑇𝑇′ will be transformed to 𝑇𝑇 without weight change:

• Substitute a carefully selected edge 𝑒𝑒 ∈ 𝑇𝑇− 𝑇𝑇′ (i.e., in 𝑇𝑇 but not in 𝑇𝑇′) for an edge 𝑒𝑒′ ∈ 𝑇𝑇′ − 𝑇𝑇,
without changing the weight of 𝑇𝑇′.

• This makes 𝑇𝑇′ resemble 𝑇𝑇 more
• This transform is repeated several times until 𝑇𝑇′ becomes identical to 𝑇𝑇 without weight change.
• This will show that 𝑊𝑊 initial 𝑇𝑇′ = 𝑊𝑊 final transformed 𝑇𝑇′ = 𝑊𝑊(𝑇𝑇), i.e. 𝑊𝑊 initial 𝑇𝑇′ = 𝑊𝑊(𝑇𝑇)
• Which implies that 𝑇𝑇 is a minimum spanning tree

CS 6212 Design and Analysis of Algorithms The Greedy method

20

PROOF OF OPTIMALITY (2/6)

Proof (Continued):

CS 6212 Design and Analysis of Algorithms The Greedy method

21

1

5 6

32

7

4

98

10
8

1

3
5

3

5
10

5

1

6

32

7

4

98
10

8

1

3

3

5

10

5

𝑇𝑇

𝑇𝑇𝑇

Example (just to illustrate the steps of the
proof for understandability):
• 𝑇𝑇 − 𝑇𝑇′ = { 3,6 , (2,9)}
• 𝑇𝑇′ − 𝑇𝑇 = { 6,9 , 5,8 }
• 𝑇𝑇 ∩ 𝑇𝑇′ = { 1,4 , 1,2 , 2,3 , 2,5 , 7,8 , (8,9)}

PROOF OF OPTIMALITY (3/6)

CS 6212 Design and Analysis of Algorithms The Greedy method

22

1

5 6

32

7

4

98

10
8

1

3
5

3

5
10

𝑇𝑇

𝑇𝑇𝑇

5

1

6

32

7

4

98
10

8

1

3

3

5

10

5

5

• 𝑒𝑒 = min_weigh_edge_of(𝑇𝑇 − 𝑇𝑇′) = min({ 3,6 , (2,9)}) =(2,9)
• Add 𝑒𝑒 to 𝑇𝑇𝑇 temporarily. This creates a cycle:

(2,9) (9,8) (8,5) (5,2)
• Edge (8,5) in that cycle is in 𝑇𝑇𝑇 but not in 𝑇𝑇
• So, we can take 𝑒𝑒′ = (8,5)
• Note: W(𝑒𝑒)=W(𝑒𝑒𝑇) Coincidence?

• 𝑇𝑇 − 𝑇𝑇′ = { 3,6 , (2,9)}
• 𝑇𝑇′ − 𝑇𝑇 = { 6,9 , 5,8 }
• 𝑇𝑇 ∩ 𝑇𝑇′ = { 1,4 , 1,2 , 2,3 , 2,5 , 7,8 ,(8,9)}
• 𝑇𝑇 ∩ 𝑇𝑇′′ = { 1,4 , 1,2 , 2,3 , 2,5 , 7,8 , 8,9 ,(8,5)}

1. Let 𝑒𝑒 = min_weight_edge_of(𝑇𝑇 − 𝑇𝑇′)
2. Add 𝑒𝑒 to 𝑇𝑇′ (temporarily).
3. This creates a cycle 𝑒𝑒1 = 𝑒𝑒 , 𝑒𝑒2 , … , 𝑒𝑒𝑘𝑘 ; 𝒆𝒆𝟐𝟐, … , 𝒆𝒆𝒌𝒌 are in 𝑻𝑻′
4. This cycle must have an edge 𝑒𝑒𝑗𝑗 ∉ 𝑇𝑇 b/c 𝑇𝑇 has no cycles
5. 𝑒𝑒𝑗𝑗 can’t be 𝑒𝑒1 because 𝑒𝑒1 = 𝑒𝑒, which is in 𝑇𝑇
6. Thus, 𝑒𝑒𝑗𝑗 must be one of 𝑒𝑒2 , … , 𝑒𝑒𝑘𝑘, and so is in 𝑇𝑇′
7. Take 𝑒𝑒′ = 𝑒𝑒𝑗𝑗∈ 𝑇𝑇′ − 𝑇𝑇
8. Transform 𝑇𝑇′: 𝑇𝑇′′ = 𝑇𝑇′ ∪ 𝑒𝑒 − {𝑒𝑒′}

All edges in 𝑇𝑇 that are < W(𝒆𝒆) are also in 𝑇𝑇′

Ex: 𝑒𝑒 = (2,9). edges in 𝑇𝑇 that are < W(𝒆𝒆) are
{(7,8), (8,9), (2,5)}, which are also in 𝑇𝑇′

Blue inserts are
for the example

PROOF OF OPTIMALITY (4/6)

Proof (Continued)

CS 6212 Design and Analysis of Algorithms The Greedy method

23

1

5 6

32

7

4

98

10
8

1

3
5

3

5
10

5

1

6

32

7

4

98
10

8

1

3

3

5

10

5

𝑇𝑇

𝑇𝑇𝑇

55

1

6

32

7

4

98
10

8

1

3

3

5

10

5

𝑇𝑇𝑇𝑇

Notice how 𝑇𝑇′′ resembles 𝑇𝑇
more than 𝑇𝑇′ resembles 𝑇𝑇

Example:
• 𝑒𝑒 = 2,9 , 𝑒𝑒′ = (8,5)
• 𝑇𝑇′′ = 𝑇𝑇′ ∪ 𝑒𝑒 − {𝑒𝑒′}

PROOF OF OPTIMALITY (5/6)
Proof (Continued):

9. Claim: 𝑊𝑊 𝑒𝑒′ ≥ 𝑊𝑊(𝑒𝑒)
• We prove the claim by contradiction. Assume 𝑊𝑊 𝑒𝑒′ < 𝑊𝑊(𝑒𝑒)

• 𝑊𝑊 𝑒𝑒′ < 𝑊𝑊 𝑒𝑒 ⇒ the greedy algorithm would process 𝑒𝑒′ before 𝑒𝑒

• All the edges that are processed before 𝑒𝑒𝑇 (and so of weight < 𝑊𝑊(𝑒𝑒)), and which were entered
into 𝑇𝑇, are also 𝑇𝑇𝑇

• Thus, 𝑒𝑒′ would have to be added by the algorithm to 𝑇𝑇, contradicting the fact that 𝑒𝑒′ is not in 𝑇𝑇.

• Therefore, the claim 𝑊𝑊 𝑒𝑒′ ≥ 𝑊𝑊 𝑒𝑒 must be true

CS 6212 Design and Analysis of Algorithms The Greedy method

24

All edges in 𝑇𝑇 that are < W(𝒆𝒆) are also in 𝑇𝑇′Remember that

time

𝑇𝑇𝑇

𝑇𝑇 Edges in 𝑇𝑇 before 𝑒𝑒𝑇
𝑒𝑒

Time when 𝑒𝑒 is
checked by algorithm

𝑒𝑒𝑇

Time when 𝑒𝑒𝑇 is
checked by algorithm

All those edges are in 𝑇𝑇𝑇
When algorithm checks 𝑒𝑒′,
it finds that adding 𝑒𝑒′ to 𝑇𝑇
would not create a cycle
b/c at that time, 𝑒𝑒′and all
prior edges in 𝑇𝑇 are also in
𝑇𝑇𝑇, and 𝑇𝑇𝑇 has no cycles

PROOF OF OPTIMALITY (6/6)

Proof (Continued):

10. Since 𝑇𝑇′′ = 𝑇𝑇′ ∪ 𝑒𝑒 − {𝑒𝑒′},
we have 𝑊𝑊(𝑇𝑇′′) = 𝑊𝑊(𝑇𝑇′) + 𝑊𝑊 𝑒𝑒 −𝑊𝑊 𝑒𝑒′ ≤ 𝑊𝑊(𝑇𝑇′)

11. 𝑊𝑊(𝑇𝑇′′) ≤ 𝑊𝑊(𝑇𝑇𝑇) and 𝑇𝑇′ is minimum ⇒ 𝑇𝑇′′ is minimum and 𝑊𝑊(𝑇𝑇′′) =
𝑊𝑊(𝑇𝑇𝑇)

12. This shows that the transform (from 𝑇𝑇′ to 𝑇𝑇′′) does not change the
weight.

13. By our strategy laid out earlier, this transform can be repeated,
yielding in the end a tree identical to 𝑇𝑇, and implying that 𝑇𝑇 has the
same weight as initial 𝑇𝑇′, which is minimum

14. Therefore, T is a minimum spanning tree. Q.E.D.

CS 6212 Design and Analysis of Algorithms The Greedy method

25

GREEDY SINGLE-SOURCE SHORTEST PATHS
-- DISTANCE APPROXIMATIONS: SPECIAL PATHS --

• Let 𝒀𝒀 be a set := {s} initially

• Definition: A path from s to a node x outside
𝑌𝑌 is called special path if each intermediary
node on the path belongs to 𝑌𝑌.

• Let DIST[1:n] be:
• DIST[i] = the length of the shortest

special path from s to i

• Greedy selection policy: choose from
outside 𝑌𝑌 the node of minimum DIST value,
and add it to 𝑌𝑌

• Claim (proved later) :
∀𝑖𝑖 ∈ 𝑌𝑌,𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒[𝑖𝑖], that is, when
a node 𝑖𝑖 joins 𝑌𝑌, its DIST is equal to its
distance from s.

• Special paths:
• 1, 2, 3 because 1 is source, and 1 and 2 are inside Y

• 1, 2, 7, 5 b/c 1 is source and 1, 2, and 7 are inside Y

• 1,5 (missing edge is an edge of weight ∞)

• Not Special paths: 1, 2, 3, 4 (b/c 3 is not in Y); 1, 7, 5, 8
(Why?)

CS 6212 Design and Analysis of Algorithms The
Greedy method 26

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

GREEDY SINGLE-SOURCE SHORTEST PATHS
ALGORITHM

CS 6212 Design and Analysis of Algorithms The Greedy method

27

Procedure SSSP(in: W[1:n,1:n], s; out: DIST[1:n]);
begin

for i =1 to n do: DIST[i] := W[s,i]; endfor
// implement Y as Boolean array Y[1:n] : Y[i]= 1 if i ∈Y, 0 otherwise
Boolean Y[1:n]; // initialized to 0
Y[s] := 1; // add s to set Y
for num =2 to n do

Select a node u from out of Y (i.e., Y[u]==0) such that
DIST[u] = min {DIST[i] | Y[i] = 0};

Y[u] := 1; // Add u to Y
// update the DIST values of the other nodes
for all node v where Y[v] = 0 do

DIST[v]= min (DIST[v], DIST[u]+W[u,v]);
endfor

endfor
End SSSP

SPECIAL PATHS AND DIST
-- UPDATES EXAMPLE --

• 𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝑣𝑣 = min(𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝑣𝑣 , 𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝑢𝑢 + 𝑊𝑊[𝑢𝑢,𝑣𝑣])

• Before update: DIST[7]=10

• After update: DIST[7]=

min(10, DIST[2]+W[2,7])=

min(10, 5+3)=8.

• DIST[3]=min(∞, DIST[2]+W[2,3])=15

CS 6212 Design and Analysis of Algorithms The Greedy method
28

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

8

2

5 6

43

7

1

9

3

2

10

15

10 11

8

11

1
5

3

5

10

6

Y

i: 1 2 3 4 5 6 7 8 9

DIST[i] 0 5 ∞ ∞ ∞ ∞ 10 ∞ ∞

i: 1 2 3 4 5 6 7 8 9

DIST[i] 0 5 15 ∞ ∞ ∞ 8 ∞ ∞

OPTIMALITY OF THE GREEDY SSSP (1/3)

Theorem: When a node u enters Y, we have DIST[u] = distance(s,u).

Proof:

• The proof is by induction on the number k of elements in Y.

• Basis: k=1. That is, Y has only node s. Well, DIST[s]=W[s,s]=0; also,
distance(s,s)=0. Thus, DIST[s]=distance(s,s).

• Induction step:
• Assume the theorem holds for every node v that had entered Y before u.

That is, assume that for every node v that entered into Y before u, v satisfies
DIST[v] = distance(s,v).

• Prove that the theorem holds for u (which is selected by the algorithm to be
the next node to enter Y). That is, prove that DIST[u] = distance(s,u). We do
so by contradiction.

CS 6212 Design and Analysis of Algorithms The Greedy method

29

OPTIMALITY OF THE GREEDY SSSP (2/3)
Proof (continued): DIST[u] = distance(s,u) ??
• Assume DIST[u] ≠ distance(s,u). That is,

distance(s,u) < DIST[u]
• This means the shortest path from s to u (call

that path P) is not a special path.
• This implies that at some point, 𝑃𝑃 exits Y going

through some node/nodes before reaching u.
• Let z be 1st such node, 𝑄𝑄 the portion of 𝑃𝑃 from

s to z.
• 𝑄𝑄 is a special path to z => DIST 𝑧𝑧 ≤ length 𝑄𝑄
• DIST 𝑧𝑧 ≤ lengtℎ 𝑄𝑄 ≤ lengtℎ 𝑃𝑃 =

distance 𝑑𝑑,𝑢𝑢 < DIST[𝑢𝑢]

• ∴ DIST 𝑧𝑧 < DIST[𝑢𝑢]
• contradicting the choice of u as having the

smallest DIST outside Y.

CS 6212 Design and Analysis of Algorithms The Greedy method

30

Y

s

u

Shortest special path from
s to u, of length DIST[u]

z

Shortest path P from s to
u, of length distance(s,u)

Q is the portion
of P from s to z.

G

The node u has the
smallest DIST outsideY

Q is a special
path to z

OPTIMALITY OF THE GREEDY SSSP (3/3)

Proof (continued):

• The contradiction means that the assumption that

DIST[u] ≠ distance(s,u)

must be false

• Hence, DIST[u] = distance(s,u). Q.E.D.

CS 6212 Design and Analysis of Algorithms The Greedy method

31

LESSONS LEARNED SO FAR
• The same greedy policy on the same problem can be implemented in different ways

• Some implementations can be much faster (e.g., min-heap for greedy sorting)

• Pre-processing the input can be very helpful (e.g., sorting P/W)

• The greedy method does not always guarantee optimality

• To prove non-optimality, use counter-examples

• For the same problem, one can formulate different greedy policies, some non-optimal
and some optimal

• Greedy selections may have to be discarded sometimes (like in MST)

• Sometime problems may have to be reformulated to make the greedy formulatable (as
in SSSP)

• Proving optimality of greedy solutions can be quite involved, but not too hard

CS 6212 Design and Analysis of Algorithms The Greedy method

32

OTHER WELL-KNOWN GREEDY ALGORITHMS

• The Huffman Coding (for lossless compression): Optimal

• Activity selection problem: Optimal

• Many other scheduling problems, graph problems, etc.,
where the greedy solution may not be optimal but is often
sub-optimal (i.e., better than random solution but is not
necessarily optimal)

• In fact, when algorithms for finding an optimal solution are too
slow, designers resort to (fast) greedy algorithms and are
contented with the sub-optimal greedy solutions

CS 6212 Design and Analysis of Algorithms The Greedy method

33

https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Activity_selection_problem

	CS 6212 Design and Analysis of Algorithms��Lecture: The Greedy Method �– Part II
	Objectives of this Lecture (Part A)
	Outline (Of Part A)
	kruskal’s greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Proof of Optimality (1/6)
	Proof of Optimality (2/6)
	Proof of Optimality (3/6)
	Proof of Optimality (4/6)
	Proof of Optimality (5/6)
	Proof of Optimality (6/6)
	Greedy Single-Source Shortest Paths�-- distance approximations: special paths --
	Greedy Single-Source Shortest Paths Algorithm
	special paths and DIST�-- updates Example --
	Optimality of the Greedy SSSP (1/3)
	Optimality of the Greedy SSSP (2/3)
	Optimality of the Greedy SSSP (3/3)
	Lessons learned so far
	Other well-known Greedy Algorithms

