CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: THE GREEDY METHOD
— PART II

Instructor: Abdou Youssef

OBJECTIVES OF THIS LECTURE (PART A)

By the end of Part A of this lecture, you will be able to:

* Prove the optimality of the greedy solution of the Minimum
Spanning Tree (MST) problem

* Prove the optimality of the greedy solution of the Single-
Source Shortest Paths (SSSP) problem

OUTLINE (OF PART A)

* Review of the MST greedy algorithm
» Proof of optimality of the greedy solution of the MST problem
* Review of the SSSP greedy algorithm
» Proof of optimality of the greedy solution of the SSSP problem

KRUSKAL’S GREEDY MST ALGORITHM

 Procedure ComputeMST(in:W[1l:n,1:n];out:T) //non-edges (i,j): WIi,j] =
0]
 begin
e Putin T all the n nodes and no edges;
 whileT hasless thann-1 edgesdo
e Select a min-weight edge e out of the remaining edges e;
e Delete e from the graph,;
e if (e doesnot createacycleinT) then
e Addeto T;
 endif
e endwhile
e end ComputeMST

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

CS 6212 Design and Analysis of Algorithms The Greedy method

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (7,8). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (8,9), (2,5). Pick (8,9). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (2,5). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (1,4), (2,5), (5,8). Pick (1,4): No cycle => OK to add

9

CS 6212 Design and Analysis of Algorithms The Greedy method

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (2,9), (5,8). Pick (2,5). No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

10

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (5,8). Creates cycle

CS 6212 Design and Analysis of Algorithms The Greedy method

11

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (5,8). Creates cycle => throw it

CS 6212 Design and Analysis of Algorithms The Greedy method

12

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (2,3) and (5,7). Pick (2,3): No cycle => OK to add

CS 6212 Design and Analysis of Algorithms The Greedy method

13

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (5,7). Creates cycle

CS 6212 Design and Analysis of Algorithms The Greedy method

14

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (5,7). Creates cycle => throw it

CS 6212 Design and Analysis of Algorithms The Greedy method

15

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (1,2), (3,10), (4,7), 6,9).Pick (1,2): No cycle => OK
to add

16

CS 6212 Design and Analysis of Algorithms The Greedy method

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

 Min edge: (3,10), (4,7), (6,9). Pick (3,10): No cycle => OK to
add

17

CS 6212 Design and Analysis of Algorithms The Greedy method

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

* Tree completed (got 8 edges)

CS 6212 Design and Analysis of Algorithms The Greedy method

18

ILLUSTRATION OF THE GREEDY MST
ALGORITHM

0—0-

e This is the spanning tree produced by the greedy algorithm

CS 6212 Design and Analysis of Algorithms The Greedy method

19

PROOF OF OPTIMALITY (1/6)

Theorem:The greedy ComputeMST algorithm computes a mininum spanning tree.

Proof:
e LetT be the tree generated by the algorithm
Let T' be a minimum spanning tree

We need to prove that T is a minimum spanning tree,i.e., W (T) = W(T")
IfT =T’ done.So assumethatT = T'.
Strategy: T’ will be transformed to T without weight change:

e Substitute a carefully selectededgee € T —T' (i.e.,in T butnotinT') foranedgee’ € T' — T,
without changing the weightof T"'.

e This makesT' resemble T more
« This transform is repeated several times until 7' becomesidentical to T without weight change.
e This will show that W (initial T") = W (final transformed T") = W (T), i.e. W (initial T") = W (T)
« Whichimplies that T is a minimum spanning tree

PROOF OF OPTIMALITY (2/6)

Proof (Continued):

Example (just to illustrate the steps of the
proof for understandability):

* T-T"={(6),(29)}

* T'=T ={(6,9),(58)}

e TNT' ={(1,4),(1,2),(2,3),(2,5),(7,8),(8,9)}

CS 6212 Design and Analysis of Algorithms The Greedy method

PROOF OF OPTIMALITY (3/6)

. Let e = min_weight_edge_of(T — T") __—— lan edgesin T that are <W(e) are alsoin T’

.Add eto T' (temporarily).
. This creates acycle e;(= e),e;, ..., €; €3,..,epareinT’ RESCECIIRCECEMFRGEIEIC <_W(,e) are
. This cycle must have an edgee; € T b/c T has no cycles {(7,8),(8,9), (2,5)}, whicharealsoin T

1
2
3
4
5. e¢j can’t be e; because e; = e, whichisin T
6
i
8

. Thus, e¢; must be one ofe,,..,e,,andsoisin T’
.Take e’ =¢ €T —T

.Transform T': T" =T'U {e} — {e'} Blue inserts are
for the example

e = min_weigh_edge_of(T — T") = min({(3,6), (2,9)}) =(2,9)
Add e to T' temporarily. This creates a cycle:

(2,9) (9,8) (8,5) (5,2)

Edge (8,5) inthat cycle isin T’ butnot in T

So, we can take e’ = (8,5)

Note: W(e)=W(e") Coincidence?

T—T"={(36),(29)}

T, —T = {(619)1 (518)}

TNT' = {(1,4),(1,2),(2,3), (2,5, (7,8), (8,9}
TNT" = {(14),(1,2),(2.3),(2,5),(7,8),(89),(8,5)

Design and Analysis of Algorithms e Greedy method

PROOF OF OPTIMALITY (4/6)

T

Proof (Continued)

Example:
¢« e=(29),e =(8,)5)
e T"=T"U{e}—{e}

Notice how T'' resembles T
more than T' resembles T

CS 6212 Design and Analysis of Algorithms The Greedy method

PROOF OF OPTIMALITY (5/6)

Proof (C ontinued) . Remember that —>| All edgesin T that are <W(e) are alsoin T'

9. Claim:W(e') = W(e)

» We prove the claim by contradiction. Assume W(e') < W (e)

« W(e') < W(e) = the greedy algorithm would process e’ before e

 All the edges that are processed before e’ (and so of weight < W (e)), and which were entered

T

into T, are also T’

. All those edges arein T’
Rl [T
it finds that adding e’ to T

!

would not create a cycle g g .
b/c at that time, e’and all / \ time
prior edges in T are alsoin , — , ,

Time whene' is Time whene is

T',and T' has no cycles

checked by algorithm checked by algorithm

» Thus, e’ would have to be added by the algorithm to T, contradicting the fact that ¢’ is notin T.

24
» Therefore, the claim W(e') > W (e) must be true

CS 6212 Design and Analysis of Algorithms The Greedy method

PROOF OF OPTIMALITY (6/6)

Proof (Continued):

10. Since T" =T' U {e} —{e'},
we have W(T'") =W(T")+W(e) —W(') <W(T")

11. W(T'") < W(T") and T’ is minimum = T" is minimum and W (T'") =
W(T"

12. This shows that the transform (from T’ to T'") does not change the
weight.

13. By our strategy laid out earlier, this transform can be repeated,
yielding in the end a tree identical to T, and implying that T has the
same weight as initial 7', which is minimum

14. Therefore, T is a minimum spanning tree. Q.E.D.

GREEDY SINGLE-SOURCE SHORTEST PATHS
-- DISTANCE APPROXIMATIONS: SPECIAL PATHS --

Let Y be a set := {s} initially

Definition: A path from s to a node x outside
Y is called special path if each intermediary
node on the path belongstoY.

Let DIST[1:n] be:

e DIST[1i] = the length of the shortest
special path froms toi

Greedy selection policy: choose from
outside Y the node of minimum DIST value,
and addittoY

Claim (proved later):

Vi € Y,DIST|i] = distance]i], thatis,when
anode i joinsY,its DIST is equal to its
distance froms.

CS 6212 Design and Analysis of Algorithms
Greedy method

* Special paths:

1,2,3 because 1 is source, and 1 and 2 are inside Y
1,2,7,5 b/c lis source and 1,2,and 7 are inside Y

1,5 (missing edge is an edge of weight)

* NotSpecialpaths:1,2,3,4 (b/c3isnotinY); 1,7,5,8

(Why?)

The

26

GREEDY SINGLE-SOURCE SHORTEST PATHS
ALGORITHM

Procedure SSSP(in: W[1l:n,1:n], s; out: DIST[1:n]);
begin
fori=1 ton do: DIST[i] := W][s,i]; endfor
// implementY as Boolean array Y[1l:n] :Y[i]= 1 ifi €Y, O otherwise
Boolean Y[1:n]; // initialized to 0
Y[s] := 1; // add stosetY
for num =2 ton do
Select a node u from out of Y (i.e., Y[u]==0) such that
DIST[u] = min {DIST[i] | Y[i] = 0};
Y[u] :=1; // AddutoY
// update the DIST values of the other nodes
for all node v where Y[v] = 0 do
DIST[v]= min (DIST[v], DIST[u]+W]u,v]);
endfor

endfor
End SSSP

SPECIAL PATHS AND DIST
-- UPDATES EXAMPLE --

e DIST[v] = min(DIST[v], DIST[u] + W [u, v])

DIST[i] O © 10 o

 Before update: DIST[7]=10

o After update: DIST[7]=
min(10, DIST[2]+W[2,7])=
min(10, 5+3)=8.

o DIST[3]=min(co, DIST[2]+W][2,3])=15

DIST[if] 0 5 15 o o

CS 6212 Design and Analysis of Algorithms The Greedy method

OPTIMALITY OF THE GREEDY SSSP (1/3)

Theorem: When a node u entersY, we have DIST[u] = distance(s,u).
Proof:
e The proofis by induction on the number k of elements inY.

e Basis: k=1.That is,Y has only node s.Well, DIST[s]=W[s,s]=0; also,
distance(s,s)=0.Thus, DIST[s]=distance(s,s).

e Induction step:

e Assume the theorem holds for every node v that had entered Y before u.
That is, assume that for every node v that entered into Y before u, v satisfies
DIST[v] = distance(s,V).

e Prove that the theorem holds for u (which is selected by the algorithm to be

the next node to enterY). That is, prove that DIST[u] = distance(s,u). We do
so by contradiction.

OPTIMALITY OF THE GREEDY SSSP (2/3)

Proof (continued): DIST[u] = distance(s,u) ??

Assume DIST[u] # distance(s,u). That is,
distance(s,u) < DIST[u]

This means the shortest path from s to u (call
that path P) is not a special path.

This implies that at some point, P exitsY going
through some node/nodes before reaching u.

Let z be 15t such node, Q the portion of P from
s to z.

Q is a special path to z => DIST[z] < length(Q)
DIST[z] < length(Q) < length(P) =
distance(s,u) < DIST[u]

« DIST[z] < DIST[u]

» contradicting the choice of u as having the
smallest DIST outsideY.

CS 6212 Design and Analysis of Algorithms

Shortest special path from
s to u, of length DIST[u]

The node u has the
smallest DIST outsideY

Y,

G

Shortest path P from s to
u, of length distance(s,u)

Q is the portion
of P from s to z.

The Greedy method

Q is a special
path to z

30

OPTIMALITY OF THE GREEDY SSSP (3/3)

Proof (continued):
e The contradiction means that the assumption that
DIST[u] # distance(s,u)
must be false

 Hence, DIST[u] = distance(s,u). Q.E.D.

LESSONS LEARNED SO FAR

e Proving optimality of greedy solutions can be quite involved, but not too hard

OTHER WELL-KNOWN GREEDY ALGORITHMS

. (for lossless compression): Optimal
. : Optimal

 Many other scheduling problems, graph problems, etc.,
where the greedy solution may not be optimal but is often
sub-optimal (i.e., better than random solution but is not
necessarily optimal)

 In fact, when algorithms for finding an optimal solution are too
slow, designers resort to (fast) greedy algorithms and are
contented with the sub-optimal greedy solutions

https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Activity_selection_problem

	CS 6212 Design and Analysis of Algorithms��Lecture: The Greedy Method �– Part II
	Objectives of this Lecture (Part A)
	Outline (Of Part A)
	kruskal’s greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Illustration of the greedy MST algorithm
	Proof of Optimality (1/6)
	Proof of Optimality (2/6)
	Proof of Optimality (3/6)
	Proof of Optimality (4/6)
	Proof of Optimality (5/6)
	Proof of Optimality (6/6)
	Greedy Single-Source Shortest Paths�-- distance approximations: special paths --
	Greedy Single-Source Shortest Paths Algorithm
	special paths and DIST�-- updates Example --
	Optimality of the Greedy SSSP (1/3)
	Optimality of the Greedy SSSP (2/3)
	Optimality of the Greedy SSSP (3/3)
	Lessons learned so far
	Other well-known Greedy Algorithms

